Как выбрать вертолет игрушечный на радиоуправлении: инструкции, отзывы. Как летает вертолет Лучшие радиоуправляемые вертолеты в топовом сегменте

1

Рецепты читателей 21.06.2017

Несколько десятилетий назад сложно было представить летающие по комнате вертолеты или квадрокоптеры. Современные модели имеют встроенный гироскоп, который не позволяет им перевернуться. Техника способна «бороться» с ветром, лопасти создаются из прочных материалов, а в комплекте изделия можно найти дополнительные запчасти.

Вертолеты на пульте управления – чудо современной техники

Для детей радиоуправляемые вертолеты и самолеты представлены в виде ярких, красочных и оригинальных моделей, аналоги которых летают по всему свету. На полках игрушечных магазинов можно встретить конструкции разных размеров, от крошечных до больших. С двумя или четырьмя лопастями на основном роторе.

Летающие изделия классифицируются по следующим техническим параметрам:

  • размеру;
  • типу двигателя;
  • методу управления;
  • виду винтов.

А также количеству каналов управления. Это сложный механизм, который предназначен для детей после 8 лет. Ведь необходимо правильно запускать конструкцию, во избежание ее преждевременной поломки и огорчения ребенка.

Основные характеристики изделия

Вертолеты на пульте управления делятся на несколько видов – комнатные механизмы, которые отличаются небольшими размерами и доступностью в управлении, подойдут даже новичкам. Механизмы при столкновении не несут вреда для стен и мебели. При безветренной погоде можно запускать вертолеты на улице.

Чтобы получить первые навыки управлением уличных конструкций можно использовать компьютерные симулянты, дабы не разбить игрушку за несколько минут. В зависимости от маневренности вертолета различают несколько каналов управления:

  • три канала – подъем/спуск, вперед/назад и разворот по/против часовой стрелки;
  • четыре канала – дополнительное направление право/влево;
  • пять каналов – для крупногабаритных конструкций, управление лопастным шагом;
  • шесть каналов – регулировка чувствительности гироскопа.

Также выделяют несколько каналов связи. Инфракрасное отличается малым радиусом действия, радиоинтерфайс характеризуется значительным расстоянием, на котором механизм способен функционировать.

Если говорить про управление с помощью гаджетов, то применяется технология Wi-Fi, которая позволяет исключить риск возникновения помех. Такие модели дорогостоящие и подходят для ребят после 12 лет.

Дополнительные возможности

Некоторые модели оснащены дополнительными опциями. Например, конструкция Silverit имеет встроенную камеру, больше используется для создания снимок, а не для пилотирования ради развлечения.

Детские модели могут иметь резервуары с водой или пластиковые ракеты, для коллективного сражения. Более сложные конструкции комплектуются виртуальными симулянтами, для качественного запуска изделия.

Стробы научиться управлять летающим механизмом нужно овладеть техникой взлета и приземления, только после этого можно переходить к прямолинейному полету или совершению других более сложных маневров.

Развитие ребенка с помощью игрушек на пульте управления

Радиоуправляемые вертолеты и самолеты – это не только веселые игрушки. Такие модели помогут малышу при общении со сверстниками, ведь подобные игры рассчитаны на коллективные сражения.

Такая вещь тренирует реакцию, координацию движения, мышечные навыки и скорость мышления. Может стать одной из долговечных забав для детей. При правильном управлении конструкция способна служить годами.

Модели на пульте заставляют ребят мыслить логически, фантазировать, продумывать свои действия на несколько шагов вперед. Орудуя механизмом запуска техники ребенок тренирует мелкую моторику, что полезно для кровообращения и развития речевого аппарата.

Такие игрушки несут пользу для зрения, предупреждают близорукость, контролируют остроту и направленность взгляда. Вертолеты и самолеты на пульте управления заставляют ребят фантазировать, представлять себя настоящими покорителями воздуха.

Покупка летающего аппарата

Купить квадрокоптер на радиоуправлении можно в интернет-магазине, где представленный широкий выбор подобных изделий. На какие критерии обратить внимание, чтобы покупка оправдала все самые смелые ожидания?

  1. Вес конструкции – чем меньше, тем сложнее управлять механизмом на улице, особенно в ветреную погоду.
  2. Материал корпуса – определяет долговечность устройства.
  3. Количество каналов управления – функциональность механизма.
  4. Мощность двигателя – скорость движения агрегата.
  5. Емкость аккумулятора – длительность полета.
  6. Диаметр зоны захвата радиоуправляемого механизма – определяет насколько дальше и выше может летать вертолет.

Чтобы ребенку понравилась покупка, важно обратить внимание на дизайн конструкции. Большинство моделей выполнены из прочного пластика, способного пережить любые падения. Важно не экономить на игрушке, дабы не огорчать малыша быстрой поломкой изделия.

Нужно учитывать, что стандартное время полетов около 10 минут, а потому требуется запастить дополнительными батарейками, дабы избежать форс-мажоров. Для ребенка лучше всего выбирать соосную схему управления, чтобы игрушку не заносило в сторону.

Такой подарок для малыша будет неописуемой радостью, который позволит всей семье проводить время на свежем воздухе. Для подростков есть возможность выбрать более усовершенствованные модели, чтобы покорять небесные просторы. Вертолет на радиоуправлении это своеобразный тренажер, который позволяет познакомиться с механизмами управления еще с малых лет.

Внимание! Любителям квадрокоптеров – летательного аппарата с четырьмя винтами на пульте управления, будет возможность не только пилотировать сложные конструкции, но и создать свой агрегат (наборы для конструирования Лего), с усовершенствованным внутренним наполнением.

Осуществите свою мечту и сделайте свой досуг не только увлекательным, но и полезным для здоровья! Удачным Вам покупок!

Подъемная сила и тяга для поступательного движения у вертолета создается с помощью несущего винта. В работе несущего винта вертолета и воздушного винта самолета есть много общего, но имеются и отличия. Сравнивая их работу, можно заметить, что при одинаковой мощности двигателя тяга несущего винта вертолета всегда больше, благодаря тому что74 диаметр несущего винта вертолета во много раз больше диаметра воздушного винта самолета. Тяга несущего винта в значительной степени зависит от его диаметра и числа оборотов.

Так, при увеличении диаметра винта вдвое тяга его увеличивается приблизительно в 16 раз; при увеличении числа оборотов вдвое - примерно в 4 раза.Несущий винт вертолета обладает исключительно важным свойством - способностью создавать подъемную силу в режиме самовращения (авторотации) в случае остановки двигателя, что позволяет вертолету совершать безопасный планирующий или парашютирующий (вертикальный) спуск и посадку. При висении и при вертикальном подъеме несущий винт (ротор) вертолета работает подобно воздушному винту. При поступательном полете ось его вращения наклоняется вперед и он работает в режиме косой обдувки

(рис. 155)
а-режим косой обдувки, б-пропеллерный режим

Когда лопасти вращаются, подъемная сила заставляет их подниматься, в то время как центробежная сила препятствует их чрезмерному закидыванию вверх, поэтому диск ротора принимает коническую форму. Скорость движения лопасти относительно воздуха неодинакова. Она меньше у оси вращения и больше у конца лопасти и, кроме того, меняется в зависимости от положения лопасти по отношению к направлению полета. Так, при вращении винта скорость лопасти, движущейся вперед, слагается из скоростей от ее вращения и поступательного движения вертолета. Для лопасти же, движущейся назад, скорость будет определяться разностью между скоростью от вращения винта и поступательного движения всей машины. Из-за меньшей скорости у лопасти, движущейся назад, будет меньше и подъемная сила. Чтобы этого не произошло, увеличивают ее угол атаки для сохранения равновесия.

При остановке мотора вертолет становится автожиром. В этом случае ротор вращается без подвода мощности в результате действия аэродинамических сил. Последние обеспечивают необходимую тягу ротора и поддерживают его вращение. Но это превращение зависит от многих факторов. Основной из них - направление обдувки ротора воздушным потоком. При моторном полете воздушный поток набегает на ротор вертолета сверху, в режиме авторотации - снизу. Для обеспечения авторотации необходима определенная скорость потока (прямого или косого), т. е. вертолет должен перемещаться относительно потока. Так, для безопасной авторотирующей посадки с режима висения аппарат должен иметь запас высоты.

По числу несущих винтов вертолеты принято классифицировать на одновинтовые, двухвинтовые и многовинтовые. Наиболее распространена одновинтовая схема. Кроме несущего, одновинтовой вертолет обычно имеет хвостовой винт. Основное назначение хвостового винта состоит в том, что он гасит реактивный момент, который стремится развернуть вертолет в полете в сторону, противоположную вращению несущего винта. Чтобы понять это явление, представим себе человека, плывущего на плоту

(рис. 156)

При попытке развернуть плот он стремится повернуться в сторону, противоположную направлению движения весла. Для того чтобы вертолет в полете не вращался, необходимо приложить к нему такой же момент, как и к несущему винту, но противоположного направления. Такой момент относительно центра тяжести вертолета и создает хвостовой винт. Момент равен произведению силы на плечо, поэтому хвостовой винт стараются расположить на хвосте так, чтобы увеличить плечо приложения силы, развиваемой этим винтом.

Вторая функция хвостового винта - путевое управление вертолетом. Это достигается путем изменения установочных углов лопастей хвостового винта, приводимого во вращение из кабины пилота с помощью ножных педалей. С изменением углов установки меняется тяга рулевого винта и нарушается равновесие реактивного момента и момента тяги хвостового винта, действующих на вертолет, что позволяет поворачивать машину в нужном направлении. Двухвинтовые вертолеты подразделяются на несколько подгрупп. К ним относятся вертолеты соосной схемы

(рис. 157, а)

При которой на одной оси расположены один над другим два несущих винта, вращающихся в противоположные стороны; вертолеты продольной схемы (рис. 157, б) с расположением несущих винтов на концах фюзеляжа; вертолеты поперечной схемы (рис. 157, в) с расположением двух несущих винтов по бокам фюзеляжа.При Двувинтовой схеме вертолета реактивные моменты одинаковых несущих винтов взаимно уравновешиваются, потому что винты вращаются в противоположные стороны с одинаковой скоростью (поэтому на таких вертолетах нет хвостовых винтов). Вертолеты многовинтовой схемы могут иметь три, четыре и более несущих винтов.

Они обладают большой грузоподъемностью.Однако подобные вертолеты строят очень редко из-за сложности системы управления и устройства трансмиссии. Горизонтальный полет является основным режимом полета вертолета, так как он обычно занимает наибольшую часть времени полета. Необходимая тяга для поступательного горизонтального или наклонного движения вертолета создается наклоном плоскости вращения винта. При этом соответственно наклоняется и равнодействующая аэродинамических сил R на винте. В горизонтальном полете вертикальная составляющая силы R дает подъемную силу Y, уравновешивающую силу тяжести G, а горизонтальная составляющая - тягу P для движения по горизонту, уравновешивающую лобовое сопротивление X вертолета

(рис. 158)
А-плоскость вращения винта при висении, Б- при горизонтальном полёте


Для того чтобы самолет или планер летал, нужна подъемная сила, а эта сила создается крылом. Поэтому главным в самолете является крыло, ибо в конечном счете Весь самолет может быть сведен в летающее крыло, без фюзеляжа, без оперения.

У вертолета роль крыла играет несущий винт. Даже если в летательном аппарате ничего больше нет, кроме несущего винта, мы можем принципиально назвать его «вертолетом».

Наверное, многие в детстве делали себе такой «вертолет», состоящий только ив одного винта, вырезанного из куска жести. Стартовым устройством для него служила обыкновенная катушка от ниток, вращающаяся на стержне.

Однако роль несущего винта вертолета гораздо более многогранна, чем роль крыла самолета.

Созданием подъемной силы еще не ограничивается назначение несущего винта.

Когда вы посмотрите на вертолет в горизонтальном полете, вы неизбежно обратите внимание на то, что фюзеляж носом наклонен к горизонту. При этом наклоненным вперед оказывается и несущий винт.

Полная аэродинамическая сила R, развиваемая несущим винтом и направленная перпендикулярно к плоскости вращения концов лопастей, в этом случае может быть разложена на две составляющие: направленную вертикально подъемную силу, которая поддерживает вертолет на заданной высоте, и силу, направленную по касательной к траектории полета, Р, которая на вертолете является силой тяги. За счет этой силы вертолет летит вперед. Таким образом, несущий винт в поступательном полете одновременно является и тянущим винтом.

Однако и этим не ограничивается роль несущего винта. У вертолета в отличие от самолета нет рулевых поверхностей, таких, как элероны, триммеры, рули направления и высоты. Да они и не имели бы смысла, так как во время полета не обдувались бы потоком воздуха и в силу этого не могли бы служить целям управления.

Ведь мы знаем, что для изменения положения тела, к нему нужно приложить внешнюю силу. В полете вертолет окружен воздухом, поэтому внешняя сила может быть только результатом взаимодействия каких-либо частей вертолета с воздушной средой. Для того чтобы возникла сила сопротивления воздуха, тело должно перемещаться с большей скоростью. Когда вертолет висит в воздухе, то этому условию не отвечает ни одна его часть, кроме винта. Поэтому роль органа управления вертолетом также возложена на несущий винт. Действуя ручкой управления, летчик с помощью особых устройств, о которых будет рассказано в следующих главах, добивается такого положения, которое равносильно изменению плоскости вращения несущего винта. При этом изменяет свое направление и полная аэродинамическая сила воздушного винта и обе ее составляющие. И если подъемная сила всегда направлена вертикально вверх, то вторая составляющая - по касательной к траектории полета.

В зависимости от угла наклона полной аэродинамической силы меняется не только направление, но и величины ее составляющих. Следовательно, управляя несущим винтом, летчик может изменять не только направление полета, но и скорость полета.

Для подъема или спуска вертолета летчик также воздействует на лопасти несущего винта, уменьшая или увеличивая одновременно и на одинаковую величину угол установки всех лопастей.

Если на вертолете отказывает двигатель, то, уменьшая углы атаки лопастей, летчик ставит несущий винт в положение самовращения (авторотации). Поддерживаемый подъемной силой, создаваемой винтом на этом режиме работы, вертолет совершает безопасный планирующий спуск.

Из сказанного выше ясно, что для понимания устройства и полета вертолета надо разобраться прежде всего в работе несущего винта; для того чтобы вертолет успешно мог летать, конструктор должен обеспечить надежность прежде всего несущего винта.

Летчики, инженеры, техники и механики, летающие на вертолетах и обслуживающие их, прежде всего должны следить за безукоризненным состоянием несущего винта.

Итак, несущий винт - вот что главное в вертолете

Режимов работы несущего винта вертолета чрезвычайно много. Каждому режиму полета вертолета соответствует свой режим работы несущего винта. Основными для вертолета являются: пропеллерный режим, режим косой обдувки, режим самовращения (авгоротация) и режим вихревого -сольца.

Пропеллерный режим возникает при вертикальном подъеме или висении вертолета.

Режим косой обдувки возникает при поступательном полете вертолета.

Режим самовращения возникает при отключении двигателя вертолета от несущего винта в полете, при этом винт вращается под действием потока воздуха.

Режим вихревого кольца возникает при снижении вертолета. При таком режиме поток воздуха, проходя сквозь ометаемую винтом поверхность сверху вниз, вновь подходит к винту сверху.

Однако в некоторых частных случаях, например, в пропеллерном режиме, его работа схожа с работой самолетного винта. Когда самолет находится на земле или летит горизонтально, его винт обдувается со стороны плоскости вращения (по оси). Когда вертолет находится на земле, висит в воздухе или поднимается вертикально вверх, его несущий винт также обдувается со стороны плоскости вращения (по оси). Различие при этом состоит только В ТОМ, что у самолета струи воздуха проходят через плоскость вращения винта в горизонтальном направлении, спереди назад, тогда как у вертолета - в вертикальном направлении, сверху вниз. При этом несущий винт захватывает воздух из зоны А сверху и отбрасывает его, закручивая, вниз, в зону. На место частиц воздуха, забранных из зоны А, поступают частицы воздуха из окружающей среды и частично из зоны Б, но уже вне плоскости вращения винта.

До того, как несущий винт был приведен во вращение, воздух над винтом н под ним находился в состоянии покоя С началом вращения винта приборы, внесенные с область действия винта, но находящуюся вдали от него, покажут наблюдателю, что в сечении 0-0 воздух по-прежнему находится в состоянии относительного покоя. Его давление равно атмосферному, а скорость. Расстояние от сечения 0-0, где еще не наблюдается влияния винта, до плоскости вращения винта есть величина переменная, которая зависит от вязкости среды и точности применяемых нами приборов. Чем точнее прибор, тем он дальше от винта зарегистрирует наличие скорости воздуха, частички которого будут устремлены к винту.

Если бы воздух был лишен сил вязкости, то действие винта сказалось бы бесконечно далеко.

Фактически ввиду того, что воздух представляет собой вязкую среду, влияние винта перестает ощущаться уже на расстоянии десятков метров.

Перенося наши приборы из сечения 0-0 все ближе к сечению, мы заметим постепенный прирост скорости воздуха, подсасываемого винтом. Та скорость, которую воздух имеет, подходя к сечению, называется индуктивной скоростью подсасывания. На основании закона сохранения энергии кинетическая энергия (энергия скорости движения) не может увеличиться без того, чтобы не уменьшался другой какой-либо вид энергии. И действительно, наряду с ростом скорости воздуха до ш, мы замечаем, что давление воздуха р0 при этом падает. Это значит, что увеличение скорости воздуха произошло за счет уменьшения давления. За винтом сечение потока сжимается и происходит еще большее увеличение скорости воздуха. Казалось бы, должно было последовать дальнейшее падение давления. Однако сразу за винтом давление растет до р-2. Не противоречит ли это закону сохранения энергии? Да, противоречит, если мы не примем во внимание того обстоятельства, что воздух извне (от винта) получил добавочную энергию (механическую). Механическая энергия винта, преобразуюсь в кинетическую и потенциальную энергию потока, увеличивает и скорость и давление воздуха одновременно.

В сечении сразу за винтом прибор нам показывает, что воздух по сравнению с сечением имеет скорость и», называемую скоростью отбрасывания. Причем скорость отбрасывания оказывается вдвое больше скорости подсасывания.

Далеко за винтом, в сечении (теоретически на бесконечном удалении), скорость и давление воздуха восстанавливаются до первоначальных значений. Энергия потока при этом из-за наличия сил вязкости рассеивается в пространстве.

Таково действие винта на воздух, которое является следствием приложения к винту энергии вращения. Этому действию соответствует ответное действие воздуха на винт, которое проявляется в виде силы тяги, являющейся проекцией полной аэродинамической силы R на ось, проходящую через втулку винта перпендикулярно плоскости его вращения. Если динамометр, соединенный с винтом, при остановленном винте показывал нулевое значение тяги, то по мере роста оборотов тяга будет все больше и больше возрастать. На режиме висения и вертикального подъема на всех других режимах полета

Величину тяги, создаваемой винтом, можно не только замерить, но и подсчитать.

Прежде всего интересно знать, как летает вертолет? В чем особенность его конструкции?

Не менее любопытно выяснить, какой путь в своем развитии прошел этот, один из первых по идее, летательный аппарат тяжелее воздуха.

Сам собой напрашивается вопрос:

    Почему же понадобились века для того, чтобы идея вертолета была претворена в жизнь и появился современный летательный аппарат, пригодный для практических нужд?

    Может ли вертолет быть реактивным?

    А разве не интересно познакомиться с конструкциями и существующими схемами вертолетов?

По вертолету можно задать тысячу вопросов, один интереснее другого.

Но самым интересным является вопрос о летных возможностях вертолета, которые определяют его практическую ценность для созидательной деятельности человека.

Когда требуется использовать самолет с посадкой на каком-либо месте, то прежде всего выясняют, есть ли там аэродром, на который бы самолет мог совершить посадку и с которого мог бы затем взлететь. Если поблизости от намеченного пункта нет аэродрома или хотя бы ровной площадки, пригодной для посадки самолета, то как бы ни была нужда в самолете, вопрос о его использовании отпадает.

Самолет приземляется с большой поступательной скоростью и совершает по посадочной полосе длинный пробег до полной остановы. Оторваться от земли самолет может

только тогда, когда, предварительно разбежавшись по взлетной дорожке, разовьет большую скорость, а для этого самолету надо совершить довольно длинный разбег. Скоростные самолеты для отрыва от земли развивают скорость более 200 км/час, а чтобы такую скорость развить, самолету необходим разбег около одного километра.

Свойство крыла самолета состоит в том, что оно создает достаточную для взлета подъемную силу только в том случае, если обтекается потоком воздуха с большой скоростью. Если скорость мала, то и подъемная сила мала. Если скорость равна нулю (т. е. самолет стоит на месте), то подъемной силы нет. В обоих случаях самолет не может подняться в воздух.

В авиационных кругах многих стран уже сейчас говорят о так называемой аэродромной проблеме. В самом деле, есть над чем задуматься, если развитие авиации идет бурными темпами, а каждый новый аэродром - это сотни гектаров превосходной земной поверхности, отнимаемой от сельского хозяйства, от лугов и пашен. Это особенно касается стран с гористым рельефом, территория которых невелика.

Однако если непременным условием создания подъемной силы на крыле является обтекание его воздухом с большой скоростью, то нельзя ли сделать так, чтобы самолет стоял на месте, а крыло двигалось относительно воздуха и создавало подъемную силу?

Достаточно сформулировать задачу, как явится и простейшее решение: крылья должны вращаться в горизонтальной плоскости, при этом они будут описывать окружность. Вращение крыльев заставит воздух обтекать их с достаточной скоростью даже тогда, когда поступательной скорости всего аппарата нет, т. е. когда аппарат стоит или висит на месте. Крылья становятся как бы лопастями воздушного винта, вращающегося не в вертикальной плоскости, как у самолета с поршневым двигателем, а в горизонтальной. Таково принципиальное решение аэродромной проблемы.

У вертолета крылья вращаются, как лопасти винта. Отсюда и происходит название этого класса летательных аппаратов тяжелее воздуха - винтокрылые аппараты.

Таким образом можно без труда ответить на следующие вопросы.

    Чему равна взлетная скорость вертолета? - Нулю. Вертолет может взлетать с места.

    Чему равна длина разбега вертолета? - Нулю. Вертолету разбег не нужен.

    Велики ли посадочная скорость и длина пробега вертолета? - Посадочная скорость и длина пробега также равны нулю, так как вертолет может опускаться отвесно вниз.

Стало быть, необходимость в обширных аэродромах отпадает.

Огромнейшее преимущество вертолета в том и состоит, что его можно использовать всюду. Он может «приземляться» на крышу высотного здания, на палубу морского корабля или речного парохода, на плот, на железнодорожную платформу, на горное плато, на полянку в лесу, на автомобиль.

Для вертолета поверхность посадочной площадки может быть неровной, немного наклонной, холмистой или бугристой, с пнями или со строениями, подвижной или неподвижной,- ничто не помешает вертолету произвести посадку и снова взлететь.

Итак, первым решающим фактором, обеспечивающим вертолету широкое распространение, является возможность вертикально, без разбега взлетать и отвесно, без пробега приземляться, что не исключает возможности взлета и посадки вертолета подобно самолету, т. е. «по-самолётному».

Вторым решающим фактором является возможность вертолета неподвижно висеть в воздухе как над самой поверхностью земли или воды, так на высоте нескольких километров.

Диапазон скоростей каждого самолета для каждой высоты полета ограничен, с одной стороны, максимальной скоростью, а с другой - минимально допустимой скоростью. Ввиду того, что лобовое сопротивление самолета увеличивается с увеличением скорости полета, а двигатель не может развивать мощность, большую его максимальной мощности, существует некоторая максимальная скорость установившегося горизонтального полета. Дальнейшее увеличение максимальной скорости полета в данном случае может произойти только за счет снижения самолета (потеря высоты). Максимальная скорость полета современных самолетов достигает 1000 и более км/час.

Минимально допустимая скорость реактивных самолетов, т. е. наименьшая скорость, на которой самолет способен совершать горизонтальный и криволинейный полет, 200-300 км в час. Если скорость будет еще меньше, то самолет начнет терять устойчивость и свалится на крыло с последующим переходом в штопор.

Легкие связные самолеты могут летать со скоростью не меньше чем 50-70 км/час, у вертолета минимальная скорость толста равна нулю, а максимальная горизонтальная скорость полета- 150-200 км/ч . Более того, вертолет может останавливаться в воздухе, поворачиваться на месте, совершать полет в стороны и даже назад.

Естественно, что такие возможности вертолета открывают широкие перспективы его использования в самых различных областях народного хозяйства, подчас там, где, казалось бы, летательный аппарат не может быть использован.

Все эти положительные стороны вертолета не должны, однако, заслонять собой его отрицательных качеств.

Вертолет не может летать с большими скоростями, он обладает пока еще недостаточной устойчивостью, сложен в управлении и более уязвим от огня стрелкового оружия, чем самолет.